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1 Introduction

Phase transition refers to the phenomenon where a system, governed by one or a set
of parameters, qualitatively changes its behavior when one or a combination of its
parameters exceeds a critical value. Perhaps the most famous example is the
independent bond percolation process on the d–dimensional integer lattice. It is
known that, for every d, there exists a critical value pc = pc(Zd) such that the
probability of the origin percolating, θ(p) = Pp(|C(0)| = ∞) is zero if the probability
of edge activation p < pc and θ(p) > 0 if p > pc. [8]

Another example might be the standard Galton–Watson process where the parameter
of interest is the mean number of offspring, m. It is known that for m ≤ 1 the
probability of having an infinite generation tree is zero, whereas if m > 1, the latter
probability is (strictly) positive.

In this text, we are going to look at two examples of interacting particle systems
whose evolution depends on a set of parameters and can be put into correspondence
with the evolution of an oriented percolation process (see the next section). The
reason we are going to make this link between the two models is that the phase
transition of the oriented percolation process, i.e. the fact that it percolates for some
non–trivial parameter value, will be the key point in proving a desired behavior of our
models, such as the indefinite survival of the particle population, for example. The
percolation of the oriented percolation process will be a sort of guarantee which will
imply the population survival, an event which will be of our main interest. The
extinction of the population, on the other hand, is usually proved by other methods.

In the rest of this introductory section, we are going to talk about the two main tools
we will be using throughout the text, namely the oriented percolation model itself and
the concept of stochastic domination between measures.

1.1 Oriented percolation

Oriented percolation is a variant of the standard percolation process where each site
or bond is open with a certain probability p independently of each other, but now,
bonds are oriented in a certain direction and the fluid we supply at the origin is
allowed to travel along open edges in the directions of their orientations only.

We denote by C the set of vertices that may be reached from the origin along open
directed paths and the percolation probability is, as usual, given by Pp(|C| =∞).

Like the standard percolation process, the oriented percolation also exhibits a phase
transition and has proven to be very useful comparison process for interacting particle
systems. The purpose of this text is to present two such examples.

In general, there can be many different models of oriented percolation depending on
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Figure 1: On the left, an example of an oriented percolation model on Z+×Z+ where
edges point on the right or upwards. On the right, a particular realization of open edges
where C = {(0, 0), (0, 1), (1, 1), (1, 2), (2, 2), (2, 3)}.

our choice of the orientation of the edges. However, the process is usually considered
on a space–time grid of the form Zd × Z+ and the edges point in the positive time
direction, so we can imagine the fluid supplied at the origin at time n = 0 flowing in
time through the open edges.

In the remaining of this subsection, we are going to rigorously define and present the
model that was studied in detail by R. Durrett in [2] and to which we will compare
the contact process, our first example. It will also serve as a base for the slightly
different oriented percolation model we will use for the spatial branching system on Zd
which we present later in the corresponding section. At the end of Section 3., we
resort to Durrett’s model again to obtain a result about the way the branching system
on Zd, in the particular case of d = 1, evolves on the line.

1.1.1 Durrett’s model

What we call Durrett’s model is an oriented percolation model on a subset of Z2, the
Durrett’s integers, given by L = {(x, n) : (x, n) ∈ Z2 with x + n even}, or rather its
intersection with the y–positive half–plane. We imagine the sites connected with edges
pointing “upwards” as illustrated on Figure 2. : every x ∈ Z2 is connected to x+ (1, 1)
and x+(−1, 1) by two edges. The second coordinate may be thought of as time and, in
that case, we can imagine every integer z ∈ Z at time t connected to its two neighbors
z + 1 and z − 1 at time t+ 1.

In Durrett’s model, every site x ∈ Z2 is open with probability p and closed with
probability 1− p independently of each other and when both ends of an edge are open,
we can go along the edge in the direction of the orientation. More precisely, we say
that y can be reached from x (x −→ y) if there is a sequence of neighboring open
sites x0 = x, x1, ..., xm = y. As usual, we define the cluster containing the origin by
C = {x ∈ L : 0 −→ x} and the event of interest, the percolation itself, {|C| = ∞}.
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Figure 2: Durrett’s oriented percolation model

Like the standard percolation process, Durrett’s model also exhibits phase transition
and we have the following theorem :

� Theorem 1. There is a value pc ∈ (0, 1) such that if p > pc, Pp(|C| =∞) > 0.

The proof of Theorem 1. can be found in Durrett’s original paper on oriented
percolation [2]. Now, we turn to the time interpretation of the process and let
A0
n = {x : (x, n) ∈ L and (0, 0)→ (x, n)} be the set of integers that can be reached in

n steps through open sites starting from 0. A major point of interest in Durrett’s
paper is the right edge of A0

n (i.e. the rightmost point in A0
n) defined by

r(n) = supA0
n.

It is shown that, on the event of percolation, r(n) achieves an asymptotic speed which
describes the span of the infinite cluster in the space. More precisely, we have the
following theorem :

� Theorem 2. r(n)/n→ ρ ∈ [0, 1] almost surely on the event of percolation.

which says that the right edge achieves asymptotically a linear speed of ρ.

The speed constant ρ may be seen as a function of the parameter p, ρ(p), with the
obvious fact that ρ(1) = 1 since in that case r(n) = n for all n. It will be important to
us later to know if we can achieve every desired speed ρ < 1 if we make the parameter
p sufficiently large. Fortunately, this is true and we also have the following theorem :

� Theorem 3. p 7→ ρ(p) is continuous for p > pc. In particular, ρ(p)→ 1 as p→ 1.

1.2 Stochastic domination

We now introduce the concept of stochastic domination of measures.
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� Definition 1. Let (X,B) be a measurable space with X partially ordered and µ1 and
µ2 two probability measures on (X,B). We say that µ2 stochastically dominates µ1

(µ1 ≤st µ2) if, for any bounded measurable increasing function f ,∫
X

fdµ1 ≤
∫
X

fdµ2

Stochastic domination can be also defined in terms of random variables, i.e. if X and
Y are two random variables taking values in (X,B), we say that X ≤st Y if the law
of Y stochastically dominates the law of X in the sense of the definition from above.
It amounts to saying that the expectation of every bounded measurable increasing
function of X is smaller than the respective expectation for Y :

E[f(X)] ≤ E[f(Y )].

The example to keep in mind, for the purpose in our text, is X = {0, 1}S where S
is a countable set (such as Zd for example) with X itself equipped with the product
topology, the corresponding Borel σ–field and partially ordered in the usual way

∀ω1, ω2 ∈ X = {0, 1}S, ω1 ≤ ω2 ⇐⇒ ω1(s) ≤ ω2(s) ∀s ∈ S.

As an example, suppose that X = {Xs : s ∈ S} and Y = {Ys : s ∈ S} are two families
of random variables taking values in {0, 1} indexed by S = Zd (i.e. X and Y are two
random vectors taking values in {0, 1}Zd). Suppose also that the X family of variables
are i.i.d. Bernoulli variables and that we’ve shown that X ≤st Y . Then, since the
probability of percolation, Pp(|C| = ∞), is the expectation of an increasing function
(namely, the indicator function of the event {|C| = ∞}), we get that the probability
of Y percolating is bigger than the probability of X percolating. In particular, if the
parameter p of the X family, which are i.i.d. Bernoulli, is such that p > pc(Zd), then
it follows that Y percolates with positive probability. Notice that we haven’t made
any assumption about the mutual (in)dependence of the variables in the Y family, yet
we were able to draw an important conclusion about its behavior.

The idea of stochastic domination is closely related to the one of coupling and the
following theorem (Theorem 2.4 of II.2. in [5]) relates the the two concepts.

� Theorem 4. Suppose µ1 and µ2 are two probability measures on a measurable space
(X,B). A necessary and sufficient condition for µ1 ≤st µ2 is that there exist a probability
measure µ on (X ×X,B ⊗ B) whose marginals are µ1 and µ2 (i.e. µ is a coupling of
µ1 and µ2) :

∀A ∈ B, µ(A×X) = µ1(A)

∀A ∈ B, µ(X × A) = µ2(A)

and such that
µ({(x, y) : x ≤ y}) = 1

i.e. µ puts all its mass over the diagonal.
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The situation of the previous example is the one that we will encounter in both of our
models. Namely, we are going to create a countably indexed family of Bernoulli
random variables, not necessarily independent, whose percolation (in a precisely
defined manner) will imply certain desired behavior of our system, such as a long term
survival of a population, for example. The way we are going to prove the positive
probability of percolation (and consequently the positive probability of survival) is by
showing that our family of variables is stochastically above a family of i.i.d.
Bernoulli random variables with a sufficiently high parameter p to guarantee
percolation.

The most important theorem that will allow us to do this is the
Liggett–Schonmann–Stacey’s theorem. It says that under certain conditions of
k–dependence and sufficiently large density (where by density we mean the
probability of site/edge activation), the Y family will dominate an independent family
having also high density.

The theorem was originally proved in [4], but here, we present the version presented in
Grimmett’s book on percolation theory (see [8], p.179) which is nicely stated for our
needs. First, we define the notion of k–dependence for a family of random variables
indexed by S − Zd. In the definition below, d : Zd × Zd → Z+ given by
d(x, y) =

∑d
k=1 |xk − yk| is the usual distance between points in Zd.

� Definition 2. A family of random variables X = {Xs : s ∈ Zd} is called k–dependent
if any two sub–families {Xs : s ∈ A} and {Xs : s ∈ B} are independent whenever
d(A,B) = min{d(x, y) : x ∈ A, y ∈ B} > k.

In other words, dependence can possibly exist only among variables which are at
distance less than k apart. We also say that the dependence among the variables is
finite ranged.

� Theorem 5. Let d, k ≥ 1. There exists a non–decreasing function π : [0, 1] → [0, 1]
satisfying π(γ) → 1 as γ → 1 such that the following holds: if Y = {Ys : s ∈ Zd} is a
k–dependent family of random variables satisfying

P(Ys = 1) ≥ γ ∀s ∈ Zd

then
Y ≥st Xπ(γ)

where Xπ(γ) = {Xπ(γ)
s : s ∈ Zd} is a family of mutually independent Bernoulli random

variables with mean π(γ), i.e.

P(Xπ(γ)
s = 1) = 1− P(Xπ(γ) = 0) = π(γ).

The above theorem says that whenever we deal with a family of Bernoulli random
variables which is k–dependent, we can make it stochastically above an independent
family of any desired density (π(γ)), provided that we sufficiently increase the density
(γ) of our original family.
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2 The contact process on Z

2.1 Description of the system

The contact process is a model of an interacting particle system. It is a continuous
time Markov process with state space {0, 1}S where S is a finite or countable graph.
In the rest of this section, we are going to suppose that S = Z. The process is usually
interpreted as a model for the spread of an infection : if the state of the process at a
given time is ξ : Z → {0, 1}, then an individual at position x in Z is infected if
ξ(x) = 1 and healthy if ξ(x) = 0. We can also imagine the state as a subset of Z
containing the positions of the infected individuals, i.e. x ∈ ξ ⇔ ξ(x) = 1, with slight
abuse of notation.

Infected individuals become healthy at a constant rate equal to 1, while healthy ones
become infected at a rate proportional to the number infected neighbors (λ × number
of infected neighbors). More precisely, if x ∈ ξt, then

P(x /∈ ξt+h|ξt) = h+ o(h) (1)

and if x /∈ ξt, then

P(x ∈ ξt+h|ξt) = λ(ξt(x− 1) + ξt(x+ 1))h+ o(h) (2)

Following the example in [3], we are going to slightly modify this standard definition
of the contact process, setting λ = 1 and letting the healing rate to be δ (instead of 1).
The qualitative behavior of the process depends on the ratio between the two rates, so
we are not making a fundamental change to the model. The dynamics that are going
to govern our modified process are thus the following :

P(x /∈ ξt+h|ξt) = δh+ o(h) if x ∈ ξt (3)

P(x ∈ ξt+h|ξt) = (ξt(x− 1) + ξt(x+ 1))h+ o(h) if x /∈ ξt (4)

2.2 Preliminaries and statement of the main theorem

We will prove that, depending on the value of δ, the infection either disappears with
probability one or spreads among individuals indefinitely with positive probability.
This behavior should be intuitively clear : if δ is very big, the healing will be much
faster than the transmission of the infection among neighbors and the latter will die
out at some point in time, and, vice–versa, if δ is very small (imagine δ = 0), then the
infection has a chance on survival among the population.

We will denote by ξAt the state of the system at time t starting with ξA0 = A and will

write ξ0
t for ξ

{0}
t . We also define the critical value for δ as

δc = sup{δ : P(ξ0
t 6= ∅ for all t) > 0} (5)

and our goal will be to prove the following theorem :
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� Theorem 6. The critical value for the contact process on Z satisfies 0 < δc ≤ 2.

We will prove the difficult part that δc > 0 which means that for all sufficiently small
values od δ, the probability that the infection disappears is non–zero.

There are two main ideas in the proof :

• using appropriate space–time normalization, compare the model, with δ = 0, to
an oriented percolation process in such a way that the percolation of the latter
will imply the indefinite survival of the infection

• extend the previous result, by continuity, for small values of δ

The first point alone proves a trivial result — namely, that the infection doesn’t die out
in the absence of healing. However, its importance lies in the fact that it allows us to
prove the main result — by increasing a bit the parameter δ, we will only decrease the
probability parameter p of the already established oriented percolation process. If we
cared to choose it sufficiently large in the first place, it will still be enough to guarantee
percolation.

2.3 Note on the process construction

The contact process can be constructed using two families of independent Poisson
processes defined on a probability space. The first one, H = {Hx : x ∈ Z}, indexed by
Z contains processes with rate δ and the second one, I = {Ix,y : x, y ∈ Z, |x− y| = 1},
contains processes with rate 1 and is doubly–indexed by the neighbors in Z. If s ∈ Hx,
then the individual at position x is healed at time s if infected and, similarly, if
s ∈ Ix,y, the infection is transmitted from the individual at position x to its neighbor
at y at time s if the former carried the infection the moment before s. The reader is
referred to [11] (Chapter 6., Section 6.2.) for a complete and clear explanation.

2.4 Proof of the main theorem

Proof. Suppose that δ = 0 and that ξ0 = A0 = [−L,L]. Since an individual cannot
heal once it has been infected, the infection will propagate in a flood fashion, with the
state at every time being an interval of the form ξ

[−L,L]
t = [lt, rt] (in what follows, we

will omit the superscript [−L,L]).

The end points of the interval of infected individuals will move respectively to lt − 1
and rt + 1 at rate equal to 1. It means that the right end point (the same holds
analogously for the left one) does a one–direction random walk, jumping by one
distance unit, i.e. infecting one individual, to the right every Exp(1) time units.
Consequently, the position of the right end point of the interval at time t, rt, will have
the same distribution as L+ N(t) where N(t) is a standard Poisson process.

Denote by Am the interval [−L,L] centered at 2mL, i.e.
Am = 2mL+ A0 = 2mL+ [−L,L] = [(2m− 1)L, (2m+ 1)L].
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Before we proceed, we briefly explain the space–time normalization and the
connection we will create with the oriented percolation process. The
time–normalization refers to the fact that we will “discretize” the process by looking
its evolution on specific time instants of the form nT where T will be suitably chosen.
Let X = {Xm,n : (m,n) ∈ Z × Z+ with m + n even} be a family of Bernoulli random
variables indexed by the Durrett integers. We let Xm,n = 1 if the following two events
are realized

• the process starting with the individuals in Am = [(2m− 1)L, (2m+ 1)L] infected
at time nT , has the individuals in the two neighboring intervals of length 2L,
Am−1 and Am+1, also infected by the time (n+ 1)T .

• during the whole time span [nT, (n + 1)T ), none of the individuals beyond, i.e.
on the right of (2m + 2)L (and respectively on the left of (2m − 2)L) have been
infected

The first assumption relates the percolation of the associated oriented percolation
process to the random variables in X to the indefinite propagation of the infection.
Indeed, suppose that X percolates, i.e. that there is, with positive probability, an
infinite cluster arising at the origin. It would mean that at every t = nT , there is at
least one contiguous block of 2L infected individuals somewhere in the space.

The second assumption allows us to control the dependence of the random variables
Xm,n which are not independent in the way they are defined. Two variables Xm,n and
Xk,l will be independent only if the Durrett distance between them is strictly greater
than 1 which makes the X family 1–dependent.

It is useful to note, as it has been a source of confusion in some of the literature, that
the variables in X, by the way we construct the contact process, are measurable with
respect to the “endings” of some sub–family of of Poisson processes and not the
contact process ξ itself.

In what follows, we will restrict our attention to the case (m,n) = (0, 0) and we will
show that if the parameter L ≥ Lε, then P(X0,0 = 1) ≥ 1 − ε. Keep in mind that we
always suppose δ = 0 and that we start the process with ξ0 = A0 = [−L,L]. In view of
the idea discussed earlier, we would like to have the individuals in A1 = [L, 3L] and
A−1 = [−3L,−L] infected at time T , but those at the left of −4L and on the right of
4L healthy. So, in order to make P(X0,0 = 1) close to one, we need to make sure the
infection localizes somewhere between [−4L, 4L] and [−3L, 3L] with high probability.

By the large deviation result on the Poisson process (Theorem 16.), if we choose L
very large, the probability that the infection after time T = 2.5L has spread within a
small factor γ around L + 2.5L = 3.5L will be very large as well. In particular, after
2.5L time units, the infection will have spread to an individual located between 3L
and 4L with very high probability.
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P(3L ≤ rT ≤ 4L) =

P(3L ≤ L+ N(2.5L) ≤ 4L) =

P(2L ≤ N(2.5L) ≤ 3L) =

P(−0.5L ≤ N(2.5L)− 2.5L ≤ 0.5L) =

P(−0.2 ≤ N(2.5L)

2.5L
− 1 ≤ 0.2) =

P
(∣∣∣∣N(2.5L)

2.5L
− 1

∣∣∣∣ ≤ 0.2

)
≥

1− exp(−CL)

(6)

The same reasoning applies for the position of the left end point at time, lT . Choosing
a large enough L, at time T , with high probability, all the individuals in A1 and A−1

will be infected and those beyond distance 4L of the origin will not be infected.

0 L 2L 3L 4L−L−2L−3L−4L

Figure 3: The infection at time t = 0

0 L 2L 3L 4L−L−2L−3L−4L

Figure 4: The infection at time t = T = 2.5L. If L is chosen large enough, the typical
number of newly infected individuals on the right (and on the left) will be around 2.5L.
The choice of 2.5× is somewhat arbitrary — the important thing is to infect at least 2L
individuals, i.e. the neighboring block, but not too much.

Now, we want to show that the infection still propagates indefinitely with positive
probability even if the healing rate is non–zero. We adopt the same idea which is to
show that P(X0,0 = 1) can be made arbitrarily large.

We already know that for every ε > 0 and δ = 0, P(X0,0 = 1) can be made greater
than 1 − ε by choosing a large enough L. Keeping the same L, we can make
P(X0,0 = 1) greater than, say, 1− 2ε (that is, still arbitrarily close to 1) for a non–zero
δ < δε. The way to do this is rather crude and consists of asking for no healing among
the individuals in [−4L, 4L] during [0, T ]. More precisely, we let

D = {(x,Hx
n) : n ≥ 1, x ∈ Z} (7)

be the set of healing moments and define the event

A = {D ∩ [−4L, 4L]× [0, T ] = ∅}. (8)

The occurrence of A, in addition to the two previous events which make X0,0 = 1, will
guarantee that the infection spreads as before to the two neighboring blocks even in
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the presence of healing. Given the construction of the contact process using the
Poisson processes, A will occur if there are no “arrivals” in a finite interval of time for
a finite number of such processes (those associated to the individuals in [−4L, 4L]).

The probability of A’s occurence, P(A) = exp(−δ × T × (8L + 1)) and can be made
arbitrarily large (≥ 1 − ε) by choosing a sufficiently small δε. The fact that A is
independent of the previous two events (they involve the two different families of
Poisson processes) and the probabilities of all three can be made arbitrarily large,
allows us to make P(X0,0 = 1), which is the the probability of their intersection, also,
arbitrarily close to 1.

The argument of how everything works, the connection with the oriented percolation
and the handling of the 1–dependence, we did them first in detail for the spatial
branching system of the next section. As they are very similar and can be applied
here almost unchanged, we refer the reader to the end of that section for a more clear
treatment of the proof.
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3 Spatial branching system with local regulation

3.1 Description of the system

The second example we are going to look at is a model invented by M. Birkner & A.
Depperschmidt and presented in [6] in which particles live on discrete locations
indexed by Zd. On every site, there can be an arbitrary number of particles and the
state of the system at time t is given by a function ξt : Zd → N. Unlike the contact
process, the spatial branching system is going to be a discrete–time model. We will
refer to time intervals as epochs.

At every epoch, particles will first reproduce on every site and then the created
offspring displace themselves on the neighboring sites by moving around. The
reproduction will depend on two factors

• the intrinsic reproduction rate which says that an individual particle has on
average m > 1 offspring in the absence of competition

• the competition with the neighboring particles which says that every individual
at position y reduces the reproductive success of an individual at position x by
an amount λxy ≥ 0.

More precisely, an individual at position x ∈ Zd in the n–th epoch will have a Poisson
random number of offspring with mean given by(

m−
∑
y∈Zd

λxyξn(y)

)+

(9)

where ξn(y) denotes the number of individuals at position y ∈ Zd in the n–th epoch.

Once created, offspring take an independent random walk step according to a kernel
p. We now state the formal description of the model [6].

We assume that the transition kernel p = (px,y)x,y∈Zd and the competition kernel
λ = (λx,y)x,y∈Zd satisfy the following conditions :

(A1) : The kernel p = (px,y)x,y∈Zd = (p0,y−x)x,y∈Zd is a zero mean aperiodic stochastic
kernel with finite range Rp ≥ 1, that is, for all x, y ∈ Zd, pxy = 0 if ‖x− y‖∞ > Rp.

(A2) : The kernel λ = (λxy)x,y∈Zd = (λy−x)x,y∈Zd is also with finite range Rλ ≥ 1 and
the self–competition term λ0 := λ00 > 0 is strictly positive.

For a configuration η ∈ RZd
+ and x ∈ Zd, we define the expected number of offspring

generated at site x by

f(η, x) := η(x)

(
m− λ0η(x)−

∑
y 6=x

λxyη(y)

)+

(10)
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and the expected number of individuals at x in the next generation if the present
configuration is η by

F (η, x) :=
∑
y∈Zd

f(η, y)pyx (11)

Now, given ξn, the configuration at the n–th epoch, the configuration at the next epoch
arises as

ξn+1(x) = N(x,n)(F (ξn, x)) (12)

where {N(x,n) : (x, n) ∈ Zd × Z+} is a family of independent standard Poisson
processes on R+, i.e. N(t) ∼ Poisson(t).

The main question which we address is the long–term survival of the population.

3.2 The (modified) oriented percolation model

We will tie the spatial branching system to an oriented percolation model which is
slightly different from Durrett’s model described earlier. Since we are interested in the
evolution in time of a population living on Zd, the underlying graph for the oriented
percolation model will be G = Zd × Z+ = {(x, n) : x ∈ Zd, n ∈ Z+} with the set of
oriented edges being E = {(x, n) → (y, n + 1) : n ∈ Z+, ‖x − y‖∞ = 1}. Notice that
there are more edges than in the usual Zd+1 cut in half : from every site x, there are
3d edges connecting it to each one of his neighbors in the next generation.

Figure 5: Portion of the graph corresponding to the oriented percolation model on
Z× Z+. Every site is connected to each of its three ‖ · ‖∞–neighbors.

We designate each site as open with probability p and closed with probability 1 − p
independently of each other. If k ≤ l, we say there is an open path from (xk, k) to
(xl, l) (we denote (xk, k) → (xl, l)) if there is a sequence of open sites
(xk, k), (xk+1, k + 1), ..., (xl, l) such that ‖xi+1 − xi‖∞ = 1 for i = k, ..., l − 1. Similarly,
we let A0

n = {x ∈ Zd : (0, 0)→ (x, n)} be the set of sites at time n that can be reached
from the origin and the define the critical parameter, as usual, by
pc = inf{p : P(A0

n 6= ∅,∀n) > 0}.

Durrett’s oriented percolation model can be embedded in this new oriented
percolation model in an obvious way — this means that the latter exhibits a phase
transition phenomenon as well and percolates for some non–trivial value of the
parameter p.
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3.3 Indefinite survival

3.3.1 Preliminaries and statement of the main theorem

The maximal mean number of particles that can be present at a site at any given
moment is m∗λ0 = m2/(4λ0) and if there are more than Mλ0 = m/λ0 particles at
some site, no offspring is produced. We also denote by κ =

∑
x 6=0 λ0x the total “non–

diagonal” competition. All of these quantities will be used in the proof of the following
main theorem (the first two are illustrated on Figure 9.) :

� Theorem 7. For each m ∈ (1, 4) and p satisfying (A1), there are choices of positive
numbers λ∗0 = λ∗0(m, p) and κ∗ = κ∗(m, p) such that if λ0 ≤ λ∗0 and κ =

∑
x 6=0 λ0x ≤

κ∗λ0, then, the population survives with positive probability, that is,

Pξ0 [∀n ∈ N,∃x ∈ Zd such that ξn(x) > 0] > 0 (13)

for all ξ0 with f(ξ0, x) > 0 for some x ∈ Zd.

To prove Theorem 7., we are going to further “discretize” the process by considering
its evolution on a sub–grid of the form Zd × n∗Z+ where n∗ is carefully chosen so that
the evolution process restricted at these specific times of the form kn∗ can be
compared to (finite–ranged) dependent oriented percolation on the same sub–grid.

We begin by introducing some necessary ingredients and definitions for the proof
which is somewhat technically involved.

At first, we fix an m̃ ∈ (1,m) and define n∗ as the smallest integer n such that
pn0xm̃

n ≥ 1 for all x with ‖x‖∞ ≤ 1, i.e.

n∗ = min
{
n ∈ N : pn0xm̃

n ≥ 1 ∀x such that ‖x‖∞ ≤ 1
}

(14)

By the Local Central Limit Theorem (see Theorem 14. in the respective section in the
Appendix), n∗ is finite and well–defined.

We also define the set J =
{

(x, n) ∈ Zd × Z+ : 0 ≤ n ≤ n∗, pn0x > 0
}

— those are the
sites to which transition is possible starting from (x, n) = (0, 0).

The m̃ we’ve chosen is a multiplication factor that we will be able to guarantee at
every time–space point in J. Notice that, due to the competition, particles cannot
reproduce with a rate m, but we can make them reproduce with a rate m̃ < m by
sufficiently reducing the competition. Starting from x = 0 at time n = 0, we will
arrange that particles be multiplied by at least m̃ in every epoch and on every site
by carefully choosing ε1, ε2 and sufficiently reducing the competition by choosing
small λ∗0 and κ∗.

To illustrate the idea, suppose there are more than, say, R particles at ξ0(0). Then,

15



there will be more than pn0xm̃
nR particles at ξn(x) for (x, n) ∈ J, i.e. more than R

particles at ξn∗(x) for those x with ‖x‖∞ ≤ 1. The reason n∗ is finite is because, due
to the finite range and aperiodicity of the transition kernel p, particles will multiply at
a faster rate than they are capable of spreading themselves in the space and after a
certain amount of time the geometric multiplication will compensate for the spreading
in any finite neighborhood of x = 0.

3.3.2 A result about the deterministic system

In this section, we are going to consider the deterministic system

ζn+1(x) = F (ζn, x) + δn(x) (15)

where F (ζn, x) is as before and δn(x) is a perturbation at time n at the site x that is
supposed to satisfy δn(x) ≥ −F (ζn, x). In this deterministic variant, we replaced the
Poisson random variables with their means, F (ζn, x), and introduced a perturbation
term.

Keep in mind throughout this section that the perturbation we will later define will be
δn(x) = N(x,n)(F (ξn, x)) − F (ξn, x) which automatically transforms the deterministic
system (ζn) into our initial stochastic system (ξn) :

ξn+1(x) = F (ξn, x) + δn(x)

= F (ξn, x) + N(x,n)(F (ξn, x))− F (ξn, x)

= N(x,n)(F (ξn, x))

(16)

In the rest of this section, the perturbation is assumed to be unknown. We will see,
however, that imposing certain conditions on it will allow us to arrive at a desired
result.

Namely, the main result about the deterministic system, stated in Lemma 8., will be
the proof that, under suitable assumptions on the perturbation term, an occupied site
(see Definition 3.) at time n = 0 (or n = k) leads to its neighbors being also occupied
at time n = n∗ (or n = k + n∗).

� Definition 3. Let η ∈ RZd
+ . For a pair of positive numbers (ε1, ε2), we will say that

a site x is (ε1, ε2)-occupied (or just occupied) with respect to η if

(1) : η(x) ∈ [ε1Mλ0 , (1− ε2)Mλ0 ]

(2) : η(y) ≤ (1− ε2)Mλ0 for all y such that ‖x− y‖∞ ≤ Rλ (17)

To quote [6], a site is occupied if “there are enough particles there, and not too many
in the neighborhood”.

For the moment, we should think of the numbers ε1 and ε2 as two parameters that we
will tailor later in such a way that everything will work just great. An occupied site
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is, in particular, a site that has non–zero number of particles and we will prove the
main theorem of this section by showing that an infinite chain of occupied sites
appears with positive probability in epochs which are multiples of n∗.

We consider the following two assumptions for the perturbation term :

(B1)ε2 : F (ζn, x) + δn(x) ≤ (1− ε2)Mλ0 for all (x, n) ∈ X
(B2)δ,K : [F (ζn, x) ≥ K =⇒ |δn(x)| ≤ δF (x, ζn)] for all (x, n) ∈ X

where X =
{

(y, n) ∈ Zd × Z+ : 0 ≤ n < n∗, ‖y‖∞ ≤ n(Rp +Rλ)
}

.

The first one simply says that the number of particles is kept uniformly bounded
through all epochs 1 ≤ n ≤ n∗ and on all sites that may somehow be concerned by the
evolution of the particles at ζ0(0).

The second one says that if the number of particles on a particular site is sufficiently
high, then the relative deviation of the perturbation with respect to that current
number of particles will be small. It means that the number of particles on the same
site in the next epoch will be within a small factor of the current number of particles
on the site : ζn+1(x) = F (ζn, x) + δn(x) ≥ (1− δ)F (ζn, x) if F (ζn, x) ≥ K.
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Figure 6: Sketch of the points of the set J when the time–space evolution grid is Z×Z+,
m̃ = 1.7 and the transition kernel is given by p+1 = p−1 = 1/4 and p0 = 1/2. At time
n = n∗ = 3, we already have m̃n∗

pn
∗

0x ≥ 1 for all ‖x‖∞ ≤ 1.

Notice that, given the stochastic perturbation we will later define, that is
δn(x) = N(x,n)(F (ζn, x)) − F (ζn, x), whether or not (B1)ε2 and (B2)δ,K hold will
depend on the random outcome ω ∈ Ω and we could speak of the probability of
either one of the assumptions being valid.

We state now the important result for the deterministic system.
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� Lemma 8. Assume that m and p are as before. For each K > 0 and δ satisfying
m(1 − δ) > m̃ > 1, there are choices of positive numbers ε1, ε2, λ

∗
0 and κ∗ such that

whenever λ0 ≤ λ∗0 and κ ≤ κ∗λ0, the following holds :

ζ0(0) is (ε1, ε2)-occupied, (B1)ε2 , (B2)δ,K are satisfied =⇒

ζn∗(x) are (ε1, ε2)-occupied for all x with ‖x‖∞ ≤ 1.

To prove that there is a positive probability of an infinite chain of occupied sites, and
thus positive probability of an indefinite survival of the population, we will show that
sites where both (B1)ε2 and (B2)δ,K are satisfied percolate on the subgrid Zd × n∗Z+,
i.e., there exists, with positive probability, at least one infinite chain of sites
C = ((x0, 0), (x1, n

∗), (x2, 2n
∗), (x3, 3n

∗), ...) with ‖xk−1 − xk‖∞ ≤ 1 such that (B1)ε2
and (B2)δ,K are true on every (xk, kn

∗) when the latter is viewed as the origin.

To be able to establish the percolation, we would need to make sure that (B1)ε2 and
(B2)δ,K both occur with sufficiently high probability. For instance, the fact that the
above lemma is valid for every K is crucial because the probability of (B2)δ,K
happening can be made as high as desired only if we are allowed to choose K as large
as needed.

We will postpone the proof of the lemma to a later section and will show how it is
used to prove the main theorem.

3.3.3 Proof of the main theorem

We may look at sites where (B1)ε2 and (B2)δ,K hold as fecund sites which favor
reproduction. An occupied site at time n = 0 (with number or particles
∈ [ε1Mλ0 , (1− ε2)Mλ0 ]) which is at the same time a fecund site, leads to his neighbors
being occupied at time n = n∗. Now, if any of those sites happens to be fecund, too,
its neighbors will be occupied at time n = 2n∗, and so on. That being said, an
(ε1, ε2)–occupied site at time n = 0 and a percolating time–oriented cluster of fecund
sites starting from this site are sufficient for long–term survival. See Figure 7. for an
example of survival scenario.

The remaining goal to finish the proof of Theorem 7. is thus to establish the
percolation of fecund sites.

We define the site–events :

A(x, n) =
{
N(y,k)(m∗λ0) ≤ (1− ε2)Mλ0 ,∀(y, k) ∈ (x, n) + X

}
B(x, n) =

{
sup
t≥K

∣∣∣∣N(y,k)(t)

t
− 1

∣∣∣∣ ≤ δ, ∀(y, k) ∈ (x, n) + X

}
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Figure 7: Percolation on the grid Z× 3Z+. Good sites are shown with small blue dots
and connected with blue lines whenever they are adjacent to each other. Occupied sites
are shown with larger red dots. At time n = 0, there are five occupied sites, two of
which are also fecund and lead to their neighbors being also occupied at time n∗ = 3.
Ultimately, only one of them (x = 0) succeeds in spreading its occupancy thanks to the
percolating cluster of good sites arising at (x, n) = (0, 0).
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Figure 8: The Poisson processes F(x, n) arising from three arbitrary different sites.
Obviously, the events {F(◦) is fecund} and {F(×) is fecund} are not independent since
they involve overlapping Poisson processes. However, F(�) is independent from the two
others because the time distance to each of them is greater than n∗. Notice also that
spatial distance greater than 2n(Rp +Rλ) would also imply independence.

Notice that m∗λ0 is the maximum possible number of particles at any site, so A(x, n)
implies the assumption (B1)ε2 on (x, n). Similarly, B(x, n) implies (B2)δ,K on (x, n).
Consequently, we call a site (x, n) fecund if both A(x, n) and B(x, n) hold (such sites
are called good in the original article [6]). Formally, we group the concerned Poisson
processes arising from (x, n) in a set

F(x, n) =
{
N(y,k) : (y, k) ∈ (x, n) + X

}
and say that F(x, n) is fecund if A(x, n) ∩B(x, n) holds. By our previous discussion,
we need to establish the percolation of fecund sites as it provides us with an infinite
chain C = ((x0, 0), (x1, n

∗), (x2, 2n
∗), (x3, 3n

∗), ...) which we may “root” at an occupied
site at time n = 0 and obtain an infinite chain of occupied sites leading to indefinite
survival of our population.

We will be analyzing the random field(
1{F(x,n) is fecund}

)
(x,n)∈Zd×n∗Z+

(18)

which consists of Bernoulli random variables (one for each site (x, n)) with parameter
p = P

(
F(x, n) is fecund

)
and which corresponds to the oriented percolation model i.e.
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two sites (x, n) and (y, k) are adjacent to each other iff |n− k| = n∗ and ‖x− y‖∞ ≤ 1.

We know, by results on independent site oriented percolation, that time–oriented
percolation does occur with positive probability for a sufficiently high probability of
site–activation p. It seems all we have to do is to take care of the probability
p = P

(
F(x, n) is fecund

)
. There is a small catch, however : our sites are, again, as in

the example with the contact process, not being fecund independently of each other
(see Figure 8.), i.e. F(x, n) and F(y, k) are not independent if
‖x − y‖∞ ≤ 2n(Rp + Rλ) (or if |n − k| ≤ n∗, but this is of no concern because we
restricted ourselves on sites which are already at time distance n∗ from each other).
Fortunately, since the dependence among sites is finite–ranged,
Liggett–Schonmann–Stacey’s theorem (see Theorem 5. in the Introduction) allows us
to easily remedy this problem by just increasing the probability of site–activation.

More precisely, there is a value p0 given by the results on independent site oriented
percolation for which percolation occurs with non–zero probability if the underlying
random field consists of independent Bernoulli random variables. However, the
random variables in our field given in (18) are not independent, but rather
k−dependent. For the value of p0 from above, Liggett–Schonmann–Stacey’s theorem
gives us another value p1 such that if P

(
F(x, n) is fecund

)
≥ p1, the field in (18),

although not consisting of entirely independent variables, will nevertheless be
stochastically above a random field of independent Bernoulli variables with parameter
p0 and will thus also percolate with non–zero probability.

At this point we should care to be more precise, since Liggett–Schonmann–Stacey’s
theorem gives the result about a random field indexed only by Zd. If
P
(
F(x, n) is fecund

)
≥ p1, then the law of the field

(
1{F(x,k) is fecund}

)
x∈Zd , indexed by

Zd with n = k fixed, which we denote by ν(k), will dominate the product measure
µ(k) =

⊗
Zd Bern(p0). Finally, the law of our starting field (18) is the product

measure
⊗

k∈n∗Z+
ν(k) (since the random variables are time–independent) which

dominates
⊗

k∈n∗Z+
µ(k) =

⊗
Zd×n∗Z+

Bern(p0).

Let us finally show now that the probability p = P
(
F(x, n) is fecund

)
can be made as

high as desired. Since {F(x, n) is fecund} = A(x, n) ∩B(x, n), it suffices to show that
both A(x, n) and B(x, n) can be realized with high probability. By translation
invariance, we will continue working with the site (x, n) = (0, 0).

P
(
X(0, 0) is good

)
= P

(
A(0, 0) ∩B(0, 0)

)
= P

(
A(0, 0)

)
+ P

(
B(0, 0)

)
− P

(
A(0, 0) ∪B(0, 0)

)
≥ P

(
A(0, 0)

)
+ P

(
B(0, 0)

)
− 1

(19)

Recall that
A(0, 0) =

{
N(y,k)(m∗λ0) ≤ (1− ε2)Mλ0 ,∀(y, k) ∈ X

}
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so if ∆ := Card(X), we have, keeping in mind the mutual independence of the Poisson
processes, that

P
(
A(0, 0)

)
= (1− a(λ0))∆ (20)

where

a(λ0) = P
(
N(m∗λ0) > (1− ε2)Mλ0

)
= P

(
N(m∗λ0)

m∗λ0
− 1 >

(1− ε2)Mλ0

m∗λ0
− 1

)
(21)

In the proof of Lemma 8., we will care to chose ε2 such that we also have

m∗λ0 ≤ (1− 2ε2)Mλ0 ⇐⇒Mλ0 ≥
m∗λ0

(1− 2ε2)
(22)

Now,

(1− ε2)Mλ0

m∗λ0
− 1 ≥ (1− ε2)

m∗λ0

m∗λ0
(1− 2ε2)

− 1 =
1− ε2 − 1 + 2ε2

1− 2ε2

=
ε2

1− 2ε2

> ε2 (23)

and consequently

a(λ0) ≤ P
(

N(m∗λ0)

m∗λ0
− 1 > ε2

)
≤ exp

(
− C1ε2m

∗
λ0

)
= exp

(
− C̃1ε2

λ0

)
(24)

where the second inequality comes from a standard large deviation result for the
Poisson process (can be seen as a corollary to Theorem 16.).

Finally, taking a small enough λ0 leads to small a(λ0), which translates to large
P(A(0, 0)).

Similarly, for

B(0, 0) =

{
sup
t≥K

∣∣∣∣N(y,k)(t)

t
− 1

∣∣∣∣ ≤ δ, ∀(y, k) ∈ X

}
(25)

we have that
P
(
B(0, 0)

)
= (1− b(K))∆ (26)

where

b(K) = P
(

sup
t≥K

∣∣∣∣N(y,k)(t)

t
− 1

∣∣∣∣ > δ

)
(27)

By the large deviation theorem (Theorem 16.) proven in the corresponding section in
the Appendix, we also have that

b(K) ≤ exp(−C̃2δK) (28)

so, making b(K) small corresponds to taking a large K which, taking into account the
proof of Lemma 8., again boils down to taking a small λ0.
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3.4 Proof of the deterministic lemma

Proof : We will first prove the lemma in the case κ = 0 when there is no
interaction among the particles at different sites. Let K and δ be given and suppose
that ζ0(0) is (ε1, ε2)–occupied (the necessary ε1 and ε2 will be chosen at a later stage,
but we may suppose that they are fixed to these chosen values at this point in the
proof). We have to show that ζn∗(x) is also occupied for all ‖x‖∞ ≤ 1, i.e.
ζn∗(x) ∈ [ε1Mλ0 , (1− ε2)Mλ0 ] for all ‖x‖∞ ≤ 1.

The upper bound follows easily by the (B1)ε2 hypothesis since we have

ζn+1(x) = F (x, ζn) + δn(x) ≤ (1− ε2)Mλ0

for all (x, n) ∈ X and in particular ζn∗(x) ≤ (1− ε2)Mλ0 for ‖x‖∞ ≤ 1 +Rλ.

We establish the lower bound by induction, by showing that

ζn(x) ≥ pn0xm̃
nε1Mλ0 (29)

for 0 ≤ n ≤ n∗ and those x for which (x, n) ∈ J. The fact that ζn∗(x) ≥ ε1Mλ0 for all
‖x‖∞ ≤ 1 will then follow by the definition of n∗.

The main idea is to adjust the parameters at our disposal — λ∗0, ε1 and ε2 such that a
large number of particles per site is maintained through all the epochs and such that
the number of particles at every epoch and on every non–empty site is multiplied by
at least m̃. For n = 0, the claim follows by the assumption that ζ0(0) is
(ε1, ε2)–occupied. Suppose now that it holds for some n < n∗.

Let’s assume for the moment that F (ζn, x) ≥ K for every x such that (x, n) ∈ J so
that we could use (B2)δ,K and write

ζn+1(x) = F (ζn, x) + δn(x) ≥ (1− δ)F (ζn, x) (30)

In the sequel, we will show, by appropriately choosing the parameters ε1 and ε2, that
(1− δ)F (ζn, x) ≥ pn+1

0x m̃n+1ε1Mλ0 . Then, since

pn+1
0x m̃n+1ε1Mλ0 =

pn+1
0x m̃n+1ε1m

λ0

(31)

and the number of pairs (x, n) such that pn+1
0x m̃n+1 is non–zero (namely, those are the

pairs (x, n) ∈ J), we can choose a sufficiently small λ∗0 such that for every λ0 ≤ λ∗0 we
have

pn+1
0x m̃n+1ε1Mλ0 ≥ K (32)

for every (x, n) ∈ J. In particular, F (ζn, x) would be greater than K for every
(x, n) ∈ J and the inequality in (30) will be justified.
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Figure 9: Sketch of the function H. By choosing ε1 such that pn0,xm̃
nε1Mλ0 is on

the left of ε2Mλ0 we can claim that H(ζn(x)) ≥ H(pn0,xm̃
nε1Mλ0) because ζn(x) ∈

[pn0,xm̃
nε1Mλ0 , (1− ε2)Mλ0 ].

By the definition of F (ζn, x),

(1− δ)F (ζn, x) = (1− δ)
∑
y∈Zd

f(ζn, y)p0y =
∑
y∈Zd

(1− δ)f(ζn, y)p0y (33)

so, it suffices to show that (1−δ)f(ζn, y) ≥ pn0,ym̃
n+1ε1Mλ0 . The Chapman–Kolmogorov

relation will then give us the desired inequality.

By definition, f(ζn, y) = H(ζn(y)) and we know that ζn(y) ≥ pn0,ym̃
nε1Mλ0 by the

induction hypothesis. If we choose ε1 such that pn0,ym̃
nε1Mλ0 ≤ ε2Mλ0 for all (y, n) ∈ J,

then, since ζn(x) ∈ [pn0,xm̃
nε1Mλ0 , (1− ε2)Mλ0 ], we could guarantee that

f(ζn, y) = H(ζn(y)) ≥ H(pn0,ym̃
nε1Mλ0) = pn0,ym̃

nε1Mλ0m(1− pn0,ym̃nε1) (34)

and since pn0,ym̃
nε1 ≤ ε2, we have

(1− δ)f(ζn, y) ≥ (1− δ)pn0,ym̃nε1Mλ0m(1− ε2) = pn0,ym̃
nε1Mλ0 × (1− δ)m(1− ε2) (35)

so, at the end, it remains to choose ε2 such that (1 − δ)m(1 − ε2) ≥ m̃. Notice that
such a choice is possible because we are claiming the validity of the lemma for those
δ’s such that (1− δ)m > m̃.

In short, the steps of the proof are as follows and in the following order :

1. We choose ε2 such that (1− δ)m(1− ε2) ≥ m̃.
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1.b For reasons that become apparent in the proof of the main theorem, we also care
to choose ε2 at this point in such a way that we also have
m∗λ0 ≤ (1 − 2ε2)Mλ0 ⇐⇒ m2/4λ0 ≤ (1 − 2ε2)m/λ0 ⇐⇒ m ≤ 4(1 − 2ε2). Notice that
the latter choice is possible because m ∈ (1, 4).

2. Then we choose ε1 such that pn0,ym̃
nε1 ≤ ε2 for every (y, n) ∈ J. This choice implies

that pn0,ym̃
nε1Mλ0 ≤ ε2Mλ0 for every (y, n) ∈ J and allows us to conclude that

(1 − δ)f(ζn, y) ≥ (1 − δ)H(pn0,ym̃
nε1Mλ0) ≥ pn0,ym̃

n+1ε1Mλ0 and consequently,

(1− δ)F (ζn, x) ≥ pn+1
0x m̃n+1ε1Mλ0 for every (x, n) ∈ J.

3. Finally, we make the appropriate choice of λ∗0 which makes F (ζn, x) ≥ K for all
(x, n) ∈ J, which, in turn, allows us to rely on (B2)δ,K to conclude that
ζn+1(x) ≥ pn+1

0x m̃n+1ε1Mλ0 and terminate the induction.

To handle the case of a non–zero neighborhood competition, in the first step above,
we additionally choose a κ∗ such that (1− δ)m(1− ε2)(1− κ∗) ≥ m̃.

Now, since

f(ζn, y) = ζn(y)

(
m− λ0ζn(y)−

∑
z 6=y

λyzζn(z)

)+

and
∑

z 6=y λyzζn(z) ≤ (1− ε2)Mλ0

∑
z 6=y λyz = κ(1− ε2)Mλ0 , if κ ≤ κ∗λ0, we have that∑

z 6=y

λyzζn(z) ≤ κ∗λ0(1− ε2)Mλ0 = κ∗λ0(1− ε2)
m

λ0

= κ∗(1− ε2)m

and consequently,

f(ζn, y) ≥ ζn(y)

(
m−λ0ζn(y)−κ∗(1−ε2)m

)+

= ζn(y)m

(
1−ζn(y)/Mλ0−κ∗(1−ε2)

)+

.

In the same fashion as in the case κ = 0, we obtain that

(1− δ)f(ζn, y) ≥ (1− δ)pn0,ym̃nε1Mλ0m(1− ε2 − κ∗(1− ε2)) =

pn0,ym̃
nε1Mλ0 × (1− δ)m(1− ε2)(1− κ∗) ≥ pn0,ym̃

n+1ε1Mλ0

and the rest of the proof proceeds exactly as before. The role of the small κ∗ and the fact
that we require κ itself to be smaller than κ∗λ0 is only to ensure that the reproduction
rate, albeit not m in the presence of competition, still remains above m̃.

The above lemma and the assumptions (B1)ε2 and (B2)δ,K have been stated for the
site (0, 0), but they can easily be adapted to any site (x, n) ∈ Zd × Z+ by a simple
translation argument.

We now summarize the necessary steps to cook up a forever–living population and
show how Theorem 7. is “applied” :
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1. Take a site which has non–zero population at time n = 0, let it be x. ξ0(x) is the
number of particles at x at time n = 0. Let S = max{ξ0(y) : ‖y − x‖∞ ≤ Rλ} be the
maximum number of particles in the Rλ–neighborhood of x which will be our
occupied site at the beginning.

2. We want to plant an infinite cluster of good sites at (x, 0) to ensure that its
occupancy will spread indefinitely in time. Our previous discussion tells us that such
a percolating cluster will appear at (x, 0) with positive probability if the probability of
a site being fecund is larger than some p1 given by Liggett–Schonmann–Stacey’s
theorem. We try to achieve P(X(0, 0) is good) ≥ P(A(0, 0)) + P(B(0, 0))− 1 ≥ p1.

3. Fix an m̃ ∈ (1,m) and then a δ > 0 such that m(1− δ) ≥ m̃.

4. Choose a sufficiently large K such that P(B(0, 0)) = (1− b(K))∆ ≥ 1+p1
2

, say.

5. For these values of δ and K, let Lemma 8. output the necessary ε1, ε2 and λ∗0 and
intervene if necessary in the way in order to make x comply with our definition of an
occupied site, that is :

• when choosing ε2, take care to make it a bit smaller to also have S ≤ (1− ε2)Mλ0

such that x complies with (2) of the definition of an occupied site.

• when choosing ε1, take care to make it small enough to also have ξ0(x) ≥ ε1Mλ0

such that x satisfies (1) of the definition of an occupied site.

6. If the λ∗0 output by the lemma is not small enough to also have
P(A(0, 0)) = (1− a(λ0))∆ ≥ 1+p1

2
, make it even smaller.

7. We are done ! Our site x is (ε1, ε2)-occupied at time n = 0 and an infinite cluster
of good sites will appear there with non–zero probability because
P(X(0, 0) is good) ≥ p1.

3.5 Speed of the population propagation in space

Let’s suppose that the Universe has chosen the right ω ∈ Ω and the population does
survive. A further question we might ask is how does it propagate into space ? If a
certain number of individuals are present at the origin at the beginning of time, how
will their descendants evolve and what portion of space will be inhabited in the long
run ?

In Figure 10., we present a population evolving on Z at various times till n = 160
which started off with 10 particles at the origin and whose transition and competition
kernel are symmetric. One thing we can observe is that the number of particles on the
inhabited sites varies around the theoretical fixed point for the given parameters.
Another thing is that the particles have spread up until certain point in space — at
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every epoch, the offspring pushes forward the boundary of the inhabited area creating
a front that propagates into space.
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Figure 10: MATLAB simulation depicting the population after 40, 80, 120 and 160
epochs. At time n = 0, there were only 10 particles at the origin. The parameters for
this simulation were as follows : m = 2, p0,−1 = p0,1 = 0.25, p0,0 = 0.5, λ0,−1 = λ0,1 =
0.01, λ0 = 0.005. The fixed point (m − 1)/

∑
x λ0x = 40. The right front is equal to

R(160) = 111.

To goal of this section will be to describe the way in which this expansion occurs for a
population evolving in Z. Namely, we will prove that the boundary of the inhabited
area grows linearly with time by making use of existing results about the speed of
branching random walks, a framework to which our model can easily be adapted.

Let N(k) be the number of living particles at time k and S1(k), S2(k), ..., SN(k)(k)
their positions at time k. We will be analyzing the propagation of the right front of
the mass of particles. Clearly, it will be carried by the rightmost particle whose
position we denote by R(k). Note that there may be more than one particles at
position R(k) if they happen to share the same site. More precisely, R(k) is defined as
follows :

R(k) = max
1≤i≤N(k)

Si(k)

At first, we will suppose that there is no competition among particles (not even among
those living on the same site) and that there is only one particle at the origin at time
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0 (ξ0(0) = 1, ξ0(x) = 0 for x 6= 0). A theorem due to Biggins [9] will allow us to prove
that the limit

α = lim
k→∞

R(k)

k
(36)

exists almost surely on the event of non–extinction, i.e. that the right front evolves
linearly as αk in the long run.

Define the function ϕ(θ) as the logarithm of the sum of the moment generating
functions of the particles’ positions at the first generation :

ϕ(θ) = log E

[N(1)∑
i=1

eθSi(1)

]
. (37)

We require that ϕ(θ) < ∞ for every θ ∈ R, a condition which is satisfied in our case
because the transition kernel p is finite–ranged (see the paragraph after the following
lemma).

� Lemma 9. ϕ(θ) = logm+ log E
[
eθS1(1)

]
.

Proof.

ϕ(θ) = log E

[N(1)∑
i=1

eθSi(1)

]

= log E

[(N(1)∑
i=1

eθSi(1)

) ∞∑
k=1

1[N(1) = k]

]

= log
∞∑
k=1

E

[(N(1)∑
i=1

eθSi(1)

)
1[N(1) = k]

]

= log
∞∑
k=1

E

[ k∑
i=1

eθSi(1)

]
P(N(1) = k)

= log
∞∑
k=1

kP(N(1) = k)E
[
eθS1(1)

]
= log E[N(1)] + log E

[
eθS1(1)

]

(38)

It remains to show that the expected number of particles at time n = 1 is m times the
(expected) number of particles at time n = 0 — which is 1 because we supposed that
ξ0(0) = 1 and ξ0(x) = 0 for all x 6= 0. This will follow once we argue that
E[N(k)] = mE[N(k − 1)] for every k.

The number of particles at time k is a sum of independent Poisson random variables
with means F (ξk−1, y) where y ranges in Z. As a consequence, N(k) is again a Poisson
random variable with mean∑

y∈Z

F (ξk−1, y) =
∑
y∈Z

∑
z∈Z

ξk−1(z)mpz,y =
∑
z∈Z

ξk−1(z)m = mN(k − 1). (39)
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Now, it is easily seen that ϕ(θ) <∞ for every θ ∈ R because

E
[
eθS1(1)

]
=

∫
R
eθxp(0, dx) =

∑
x∈Z,|x|≤Rp

eθxp0,x <∞. (40)

Figure 11. below shows an accurate sketch of the function ϕ(θ) when the transition
kernel p = [1/4, 1/2, 1/4]. In that case, ϕ(θ) = logm + log(e−θ/4 + 1/2 + eθ/4) =
logm+ log(1/2 + cosh(θ)/2).

'(θ) = log
(

1

2
+ 1

2
cosh(θ)

)

+ logm

logm

θ

Figure 11: Sketch of the function ϕ(θ) when the transition kernel p is given by p0,1 =
p0,−1 = 1/4 and p0,0 = 1/2.

We also define the function ϕ∗(a) as the Legendre transform of the function ϕ(θ) :

ϕ∗(a) = sup
θ∈R

[
aθ − ϕ(θ)

]
. (41)

The function ϕ∗(a) plays a special role in that the speed of the right front R(k) is given
by

α = inf
{
a ≥ 0 : ϕ∗(a) > 0

}
. (42)

More precisely, we have the following theorem due to Biggins [9] :

� Theorem 10. Let R(k) = max1≤i≤N(k) Si(k) and α = inf
{
a ≥ 0 : ϕ∗(a) > 0

}
be as

defined above. Then, R(k)/k → α almost surely on the event of non–extinction.

Clearly, once we introduce back the competition, the speed of the right front will
decrease. Our aim now is to prove that the dependence of the speed on the
competition is continuous, i.e. that any speed β < α might be achieved if one
sufficiently reduces the competition.

29



'
∗(a) = supθ2R[aθ − '(θ)]

− logm

θα

β

Figure 12: Sketch of the function ϕ∗(a)

We keep the definitions from the beginning of the section — the reproduction rate m,
the transition kernel p which is supposed to satisfy (A1) and the competition kernel λ
which is supposed to satisfy (A2). In the sequel we will assume they are defined and
known.

The idea is to follow the example of the proof of Theorem 7. More precisely, we will
prove an analogue of Lemma 8. (with another n∗ suitably chosen) which says that an
occupied site at time n = 0 remains occupied at time n = n∗ and makes the site on
position dβn∗e on the right occupied as well. This will lead us to consider yet another
model of oriented percolation (which we will call the new model) where the edges are
between sites

(kn∗, l dβn∗e)→ ((k + 1)n∗, l dβn∗e)
and

(kn∗, l dβn∗e)→ ((k + 1)n∗, (l + 1) dβn∗e)
for k ≥ 0 and 0 ≤ l ≤ k. See Figure 13. for an illustration with n∗ = 3 and β = 1.
This new model is essentially a skewed version of Durrett’s percolation model with
only the origin present at the beginning.

Now, if the percolating cluster in the new model could extend arbitrarily close to the
right border for a sufficiently high percolation parameter (i.e. sufficiently small
competition), it would imply that the speed of the right front R(k) could be made
arbitrarily close to β.

� Lemma 11. Let α be the speed of propagation of the right front of the population in
the absence of competition and let β < α. Define n∗ = n∗(p, β, m̃) by

n∗ = min
{
n ∈ N : pn0,xm̃

n ≥ 1 for x = 0 and x = dβne
}
.

There exists m̃ < m such that n∗ is finite.
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Figure 13: The sketch of the new percolation grid if n∗ = 3 and β = 1 : a skewed
version of Durrett’s percolation model. A speed of ρ for its infinite cluster right end
translates to a speed of (1 + ρ)β/2 for the right front of the spatial branching system

Proof. The main problem is to prove that pn0,dβnem̃
n ≥ 1 for n sufficiently large. The

fact that pn0,0m̃
n ≥ 1 for some finite n follows from the standard local central limit

theorem as before. We will show that pn0,dβnem̃
n tends to infinity as n gets larger by

essentially following the usual proof of Cramér’s theorem using a local central limit
theorem instead of the standard central limit theorem to conclude.

Let M(θ) be the moment generating function of the transition kernel p, i.e.
M(θ) =

∫
eθxp(0, dx), Λ(θ) = logM(θ) the corresponding log–moment generating

function and let the associated rate function be I(b) = supθ∈R{bθ − Λ(θ)}. Suppose
that the supremum for I(β) (b = β) is achieved at a point θ∗ ∈ R, i.e.
I(β) = βθ∗ − Λ(θ∗).

The idea of the proof is to relate the behavior of pn0,dβne to the same quantity of a
modified transition kernel, p̃, whose mean will be β. More precisely, we define

p̃0,x = p0,x exp[xθ∗ − Λ(θ∗)] (43)

for every x ∈ Z. To see that the mean of p̃ is β, notice that its generating function

M̃(θ) =

∫
eθxp̃(0, dx) =

∫
eθxeθ

∗x−Λ(θ∗)p(0, dx) = M(θ + θ∗)e−Λ(θ∗). (44)
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Now, the mean of p̃, which is given by

dM̃(θ)

dθ

∣∣∣∣
θ=0

= M ′(θ∗)e−Λ(θ∗) = M ′(θ∗)/M(θ∗) (45)

is indeed equal to β because θ∗ achieves the supremum for I(β) and therefore

d

dθ

[
βθ − logM(θ)

]∣∣∣∣
θ=θ∗

= 0⇐⇒ β −M ′(θ∗)/M(θ∗) = 0. (46)

The new kernel p̃ can be related to p via the following relation (valid for every n) :

p̃n0,x = pn0,x exp[xθ∗ − nΛ(θ∗)]⇐⇒ pn0,x = p̃n0,x exp[nΛ(θ∗)− xθ∗] (47)

which can be proven by induction. Indeed, suppose that we have p̃n0,x = pn0,x exp[xθ∗ −
nΛ(θ∗)]. Then,

p̃n+1
0,x =

∑
y∈Z

p̃n0,yp̃y,x =
∑
y∈Z

pn0,y exp[yθ∗ − nΛ(θ∗)]× py,x exp[(x− y)θ∗ − Λ(θ∗)]

= exp[xθ∗ − (n+ 1)Λ(θ∗)]pn+1
0,x

(48)

where we used the fact that py,x = p0,x−y.

Now, since Λ(θ∗) = βθ∗ − I(β), we have, using the second identity of equation (47),

pn0,dβne = p̃n0,dβne exp[nΛ(θ∗)− dβne θ∗] = p̃n0,dβne exp[−nI(β) + βnθ∗ − dβne θ∗] (49)

Furthermore, I(β) = supθ∈R{βθ − log
∫
eθxp(0, dx)} and since

log

∫
eθxp(0, dx) = log E[eθS1(1)] = ϕ(θ)− logm

by Lemma 9., we obtain that

I(β) = logm+ sup
θ∈R
{βθ − ϕ(θ)} = logm+ ϕ∗(β).

Finally, multiplying by m̃n,

pn0,dβnem̃
n = p̃n0,dβne exp[−n(ϕ∗(β) + logm− log m̃) + (βn− dβne)θ∗] (50)

which tends to ∞ as n→∞. To see this, note that the quantity exp[(βn− dβne)θ∗] is
bounded by a constant, the term p̃n0,dβne ∼ C/

√
n by the local central limit theorem for

p̃ (see Theorem 15. in the Appendix) and it remains to show that −
(
ϕ∗(β) + logm−

log m̃) > 0, but once we have fixed β, we can choose an m̃ sufficiently close to m to
assure the inequality. See Figure 12. and notice that ϕ∗(β) < 0 by the choice of β.

Once we have established Lemma 11., the proof of the following lemma is analogous to
the proof of the deterministic lemma of the preceding section.
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� Lemma 12. Let α be the speed of propagation of the right front of the population in
the absence of competition and let β < α. For each K > 0 and δ satisfying
m(1 − δ) > m̃ > 1, there are choices of positive numbers ε1, ε2, λ

∗
0 and κ∗ such that

whenever λ0 ≤ λ∗0 and κ ≤ κ∗λ0, the following holds :

ζ0(0) is (ε1, ε2)-occupied, (B1)ε2 , (B2)δ,K are satisfied =⇒

ζn∗(0) and ζn∗(dβn∗e) are (ε1, ε2)-occupied .

In the same way as in Theorem 7., this lemma allows us to conclude that the population
survives with positive probability (the good sites on the new grid percolate and give
rise to an infinite chain of occupied sites). We show that by possibly reducing the
competition even more, we can achieve the desired speed β for R(k) on this event of
survival. More precisely, we have the following theorem :

� Theorem 13. Let α be the speed of propagation of the right front of the population
in the absence of competition and let β < α. There are choices of positive numbers λ∗0
and κ∗ such that if λ0 ≤ λ∗0 and

∑
x6=0 λ0x ≤ κ∗λ0, then

lim inf
k→∞

R(k)

k
≥ β

on a non–zero probability event on which the population survives.

As mentioned previously, there is a correspondence between Durrett’s oriented
percolation model and the new oriented percolation model we are considering in this
section. The blue line in Figure 13. (the line that starts at the origin and passes
through the middle site in every even epoch) corresponds to the y–axis in Durrett’s
model. We remind that the right end of the infinite cluster appearing at the origin is
denoted by r(k) and achieves a speed of ρ ∈ (0, 1] almost surely on the event of
percolation (Theorem 2.). Moreover, ρ→ 1 as the parameter p→ 1 (Theorem 3.).

The maximal span at time k of the infinite cluster arising at the origin in Durrett’s
model is [−k, k], while in our model (at time kn∗) is [0, k dβn∗e]. By a simple

observation, we notice that a speed of ρ for r(k) corresponds to a speed of (1+ρ)β
2

for
R(k). In particular, R(k)→ β as p→ 1.

To prove Theorem 13., we use Lemma 12. with β′ > β and proceed in the same
fashion as the proof of Theorem 7., the only differences being the use of the new
oriented percolation grid and the fact that we may need to reduce the competition
even more to achieve the desired speed β of the right front of the percolating cluster.
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4 Appendix

4.1 Local central limit theorem

4.1.1 Zero–mean transition kernel

In this section, we are going to establish the fact that the number n∗ defined in section
3.3.1. is finite. We recall its definition :

n∗ = min
{
n ∈ N : pn0,xm̃

n ≥ 1 ∀x such that ‖x‖∞ ≤ 1
}

(51)

where pn0,x is the n–step transition probability from 0 to x and m̃ is the guaranteed
multiplication factor.

We will make use of a standard local central limit theorem for a random walk on the
d–dimensional integer lattice which asserts that pn0,x decays at a polynomial rate if
certain conditions are satisfied by p. More precisely, we have the following result :

� Theorem 14. Let p be an irreducible aperiodic transition kernel, defined by a measure
µ on Zd (px,y = µ(y−x) and thus p0,x = µ(x)) which has zero–mean and finite variance.
Then, for every x ∈ Zd, we have

pn0,x = µ∗n(x) ∼ C

nd/2
(52)

where C is a constant depending on µ.

The transition kernel p from the spatial branching model satisfies the hypotheses of
the previous theorem and, since the number of x ∈ Zd such that ‖x‖∞ ≤ 1 is finite, we
deduce that n∗ is finite as well.

Theorem 14. is obtained as a corollary to a more precise result which can be found in
[7] (Chapter III. 13, Theorem (13.10) and Corollary (13.11)).

4.1.2 Non zero–mean transition kernel

A similar result holds in the case where the transition kernel has a drift. The theorem
below is a paraphrase of a slightly more general result proved in [10] (Chapter VII. 1,
Theorem 1.). We use it to prove that the redefined n∗ in section 3.5. is finite.

� Theorem 15. Let p̃ be an irreducible aperiodic transition kernel taking values in Z
with mean β and variance σ2 > 0. Then,

sup
x

∣∣∣∣σ√n× p̃n0,x − 1√
2π

exp

{
− 1

2

(
x− nβ
σ
√
n

)2}∣∣∣∣→ 0. (53)

By taking x = dβne, we have that

p̃n0,dβne ∼
C√
n

(54)

as n→∞.
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4.2 Poission process large deviations

� Theorem 16. Let N be a standard Poisson process (N(t) is a Poisson random
variable with mean t). Then, there is a constant C such that for every δ > 0,

P
(

sup
t≥K

∣∣∣∣N(t)

t
− 1

∣∣∣∣ > δ

)
≤ exp

(
− CδK

)
.

The proof of Theorem 16. will make use of the Doob’s Lp martingale inequality (for
p = 1) which we recall here without proof.

� Theorem 17 (Doob’s L1 martingale inequality). Let (Xt)t≥0 be a non–negative
continuous time càdlàg martingale. That is, for all times s and t with s < t,
E[Xt|Fs] = Xs. Then, for any constant C,

P
(

sup
0≥t≥T

Xt ≥ C

)
≤ E[XT ]

C
(55)

Proof. (of Theorem 16.) Let δ > 0. We will show that

P
(

sup
t≥K

N(t)

t
− 1 ≥ δ

)
≤ exp

(
− C ′δK

)
The (standard) Poisson process N(t) is in particular a Levy process with

E[eθN(t)] = etψ(θ) (56)

where ψ(θ) is the characteristic exponent of N(t), a random variable with infinitely
divisible distribution. More precisely,

ψ(θ) = log E[eθN(1)] = log e(eθ−1) = eθ − 1. (57)

Consequently, the process Mt = eθN(t)−tψ(θ) is a non–negative martingale. We fix a time
T > K

P
(

sup
T≥t≥K

N(t)

t
− 1 ≥ δ

)
= P

(
∃t ∈ [K,T ] :

N(t)

t
≥ δ + 1

)
= P

(
∃t ∈ [K,T ] : N(t) ≥ t(δ + 1)

)
= P

(
∃t ∈ [K,T ] : θN(t) ≥ θt(δ + 1)

)
= P

(
∃t ∈ [K,T ] : eθN(t)−tψ(θ) ≥ eθt(δ+1)−tψ(θ)

)
= P

(
∃t ∈ [K,T ] : eθN(t)−tψ(θ) ≥ et(θ(δ+1)−ψ(θ))

)
(58)
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Now, if θ(δ + 1)− ψ(θ) ≥ 0, we have, using the Doob’s martingale inequality, that

P
(

sup
T≥t≥K

N(t)

t
− 1 ≥ δ

)
≤ P

(
∃t ∈ [K,T ] : eθN(t)−tψ(θ) ≥ eK(θ(δ+1)−ψ(θ))

)
≤ E[eθNT−Tψ(θ)]

eK(θ(δ+1)−ψ(θ))
=

1

eK(θ(δ+1)−ψ(θ))

(59)

By optimizing on θ, we have that

P
(

sup
T≥t≥K

N(t)

t
− 1 ≥ δ

)
≤ exp(−Kψ∗(δ + 1)) (60)

where ψ∗(δ + 1) = sup
θ
{(δ + 1)θ − ψ(θ)}. To have a meaningful bound, we need

ψ∗(δ + 1) > 0 which is equivalent to δ + 1 > ψ′(0). Since ψ′(0) = E[N(1)] = 1 and
δ > 0, the last inequality is satisfied. Note that we also have θ(δ + 1) − ψ(θ) ≥ 0 for
the minimizing θ.

θ

δ < 0

δ > 0

e
θ
− 1

Figure 14: Sketch of the characteristic exponent ψ(θ) of the standard Poisson process,
along with two lines l(θ) = (δ + 1)θ corresponding to δ > 0 and δ < 0. When δ > 0, all
the reasoning in the proof is valid.
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